OLEDs, PLEDs, QLEDs Perovoleds and RELEDs

Professor Poopathy Kathirgamanathan (P. K. Nathan) *Regional Vice President, Europe - Society for Information Displays* **p.kathir@brunel.ac.uk**

Topics

- Background
 OLEDs
- 3. Quantum Dots for Rec 2020
- 4. High Triplet Energy Hole Transporters and Electron
 - Transporters

Our Recent Work

http://youtu.be/D0WV1R9RfI0

http://youtu.be/Ws76e-AAApl

http://youtu.be/SKIsnei0k4A

http://youtu.be/p4aDAkC61Wk

http://youtu.be/RgoMnroRnhc

http://youtu.be/HGHg-f74NAA

http://youtu.be/UWKoJjViOUg

http://youtu.be/QC-nUMkMOFc

Over the last 10 years, we made over 2500+ ETL, 400+ EIL, 100+ Li Complexes, 600+ emitters, 100+ hole transporters and 9000 OLED test panels (100 mm x 100 mm).

IDtechEX

Market: Oled Materials

Current Market

Organic Electroluminescence

Device structure of Polymer-OLED (PLED) C |D| T

OLEDs Summit 29 September 2010

© CDT 2010

LCD's vs. OLED's The Complexity of LCD's vs. The Simplicity of OLED's

Konica Minolta, 15, 000 flexible OLEDs, TULIP Festival

Konica Minolta's OLED Lit Signage.

J.-H. Jou et al., Advanced Functional Materials, 23(21), pages 2750–7, June 6, 2013

Parameter	Incandescent	CFL	Inorganic LED	OLED
		"CAUES		
E fficiency/ Im W ⁻¹	8-15	50-80	30-100	40-100
CRI	100	70-80	40-85	85-90
Lifetime/hours	800	10000-20000	15000-60000	20000
Consumption Cost	High	Low	Low	Low
E nvironmental Impact	Bad	Bad Hg, UV, Poor CRI	Point Source	G ood P lanar/ Diffus e

Fair 50–60 CRI Standard Warm White Fluorescent Standard Cool White Fluorescent 60–70 CRI Premium High Pressure Sodium Conventional Metal Halide

Better 70–80 CRI Thin Coat Tri-Phospher Fluorescent

Best 80–90 White High Pressure Sodium Warm Metal Halide Thick Coat Tri-Phospher Fluorescent 90–100 High CRI Fluorescents Incandescent and Tungsten-Halogen

Efficiency : LED's vs. OLEDs

- Complete conversion of singlets to triplets
- Potential for 100% internal efficiency in OLEDs

Green Phosphorescent Materials

 λ_{max} 526nm (DCM)

 λ_{max} 528nm (DCM)

Ref: P. Kathirgamanathan, R.Price, S.Ganeshamurugan, G.Paramaswara, M.Kumaraverl, A.Partheepan, S.Selvaranjan, J.Antipan-Lara and S. Surendrakumar., Patent No: WO 2005/080526; Priority date: 14 February 2004

Blue Phosphorescent Materials

<u>Ref</u>: P. Kathirgamanathan, R.Price, S.Ganeshamurugan, G.Paramaswara, M.Kumaraverl, A.Partheepan, S.Selvaranjan, J.Antipan-Lara and S. Surendrakumar., Patent No: WO 2005/080526; Priority date: 14 February 2004

Excitation and Emission Mechanism: Rare Earths

PL and EL Spectra of Tb(III), Dy(III), Eu(III) & Sm(III)

41

5*s*

5p

65

6s²

5d⁰⁻¹

5s²5p⁶

4f²⁻¹⁴

1s2-4d

core

unfilled shell

ielding electrons

6.2

7.0

Conventional vs. Thermally Activated Delayed Fluorescence

Uoyama, Goushi, Shizu, Noumura and Adachi, Kyushu University, Nature, 492 (2012)234

Conventional vs. Thermally Activated Delayed Fluorescence

 $\label{eq:phi} \begin{array}{l} \eta \text{ext} \; = \; 11.6 \; \% \\ \eta \text{I} \; = \; 39 \; \text{cd} \; \text{A-1} \\ \eta \text{p} \; = \; 27.2 \; \text{Im} \; \text{W-1} \\ \text{X}, \text{y} \; = \; (0.19, \; 0.32) \end{array}$

ηext = 12.8 % ηI = 36 cd A-1 ηp = 26 lm W-1 x,y = (0.29, 0.37)

REC 2020

	Colour	NTSC	Rec 2020	
	Red	(0.670, 0.33)	(0.708, 0.292)	
	Green	(0.210, 0.710)	(0.170, 0.797)	
	Blue	(0.140, 0.080)	(0.131, 0.046)	
	White	(0.310, 0.316)	(0.3127, 0.3290)	
0.9 0.8 510 nm 0.7 0.6 500 nm 0.5 y 0.4 0.2 0.2 Purplish blue 0 0	Approximate Co CIE Chromati 540 nm 550 nm Green Bluish green Bluegreen Bluegreen Bluegreen Blue Purplish Blue Blue Blue Blue Blue Blue Blue Blue	lor regions on city Diagram 0.8 0.7 0.6 0.7 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.8 0.7 0.6 0.7 0.6 0.7 0.8 0.7 0.8 0.7 0.6 0.7 0.8 0.7 0.8 0.7 0.0 0.7 0.8 0.7 0.0 0.7 0.7 0.8 0.7 0.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Area of the white triangle represents the gamut of color that can be matched by various combinations of Réd/Green/Blue used in color monitors.	560 580 600 620 700 REC 2020 0.4 0.5 0.6 0.7 0.8

0.4 X 0.5 0.6 0.7

0.8

0.1 0.2 0.3

0.0

Х

Red Qoleds Based on CdSe/ZnS

Performance Data.All data at 1000 cdm⁻².

Colour	Fluorescents (v)	Phosphorescents (v)	Polymers/Dendrimers (s)	Quantum Dots (s)
Red	(0.65, 0.35), 300-500 kh, 10 cd/A	(0.64, 0.36), 330 kh, 30 cd/A, 22 lm/W	(0.63, 0.37), 350 kh, 30 cd/A	
Red		(0.69, 0.31), 250 kh, 17 cd/A, 10 lm/W	(0.67, 0.32) 200 kh, 11 cd/A	(0.69, 0.31), 2 kh, 15-20 cd/A, 15 lm/W
Green	(0.29, 0.61), 65 kh, 31 cd/A	(0.34, 0.62), 400 kh, 78 cd/A 50 lm/W	(0.30, 0.63), 140 kh, 50 cd/A	(0.17, 0.73) 2 kh 70 cd/A 50 lm/W
Blue	(0.15, 0.14), 50 kh, 10 cd/A, 5 lm/W	(0.18,0.40), 20 kh 50 cd/A 30lm/W	(0.15, 0.14), 21 kh 6 cd/A	(0.16, 0.05) 0.01 kh, 0.55 cd/A 0.26 lm/W

Displays Development Solciet (ULVAC)

Solciet – £1 million (100 mm x 100 mm), Tact Time: 1-2 hours Satella- Cluster tool , £3 million(200mm x 200 mm), Tact Time: 30 minutes Zelda – Mass Production, £20 million (400 mm x 500 mm), Tact Time: 4 minutes

ULVAC (OLED) Prototyping Equipment in A1000 Clean Room, Brunel

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

FLEXOLIGHTING

Long Life, Large Area, Large (High) Uniformity, Flexible and Conformable OLEDs for Lighting

RIXTRON

🎲 Beneq

Brunel University London

A STEEL

RobinsonBrothers Excellence in Chemistre

NOVALIA

0.6 0.7 0.8 0.1 0.3 0.4 0.5

Photonics Public Private Partnership Annual Meeting 2016

Red and Green Quantum Dot Based LEDs (QLEDs): Towards Achieving REC 2020 Color Coordinates

Our Recent Work

http://youtu.be/D0WV1R9RfI0

http://youtu.be/Ws76e-AAApl

http://youtu.be/SKIsnei0k4A

http://youtu.be/p4aDAkC61Wk

http://youtu.be/RgoMnroRnhc

http://youtu.be/HGHg-f74NAA

http://youtu.be/UWKoJjViOUg

http://youtu.be/QC-nUMkMOFc

Quantum Dots

Some Players – QD Vision, Nanoco, Nanosys, Samsung, Sony, Dow, Merck

Synthesis of CdSe Quantum Dots

Theoretical decomposition schematic for the preparation of TOPO capped CdSe using a single source precursor

Paul O'Brien, Manchester Co-Founder, Nanoco

Green Devices

Year

0.5 oV

Holloway et al, SID, 2015

10.9 cd/A

Bright, Efficient & Envionmentally-Benign InP@ZnSeS Quantum Dot LEDs

J. Lim et al, ACS Nano., 7, 9019 (2013)

Mean:	10.33649 nm
Std. Dev.:	3.158291 nm
Max:	15.89002 nm
Min:	4.66029 nm
Num. of	
Measurem	
ents:	13
CPU Time:	2.3 sec

•••FULLSCALENANO

Current Efficiency vs. CIE x

Current Efficiency vs. CIE x

Colour	NTSC	Rec 2020
Red	(0.670, 0.33)	(0.708, 0.292)
Green	(0.210, 0.710)	(0.170, 0.797)
Blue	(0.140, 0.080)	(0.131, 0.046)

Material	CIE(x,y)	Current Efficiency/cd/A	Life-Time at 1000 cdm ⁻²
Phosohorescent	(0.64, 0.36)	24-30	200000 hours
red			
QD (CdSe/CdS)-QD	(0.68, 0.32)	18	?
Vision, MIT			
QD	(0.69. 0.30)	12	?
(CdSe/CdS/ZnS)			
Holloway et al			
QD	(0.70, 0.30)	6.5	?
(CdSe/CdS/ZnS)			
JJ et al			
Brunel	(0.695, 0.305)	10	1000 + hours
Brunel	(0.708, 0.292)	4	250 hours
Brunel	(0.712, 0.288)	0.5-1.0	On going

Conclusions:

1. Highly saturated red (0.712, 0.288) and green [Two types, (0.118, 0.665) and (0.186, 0.738)] QOLEDs have been demonstrated.

2. Life-Time in excess of 1000 hours has been obtained at 1000 $cdm^{\text{-2}}$

High Triplet State and High Tg Hole Transporters: High Performance at High Luminance

Key Technical Requirements for Deep Blue PHOLEDs

High triplet energy HTL ($E_T > 2.8 \text{ eV}$)

• Triplet exciton blocking: No triplet exciton quenching by HTL

High triplet energy ETL ($E_T > 2.8 \text{ eV}$)

• Triplet exciton blocking: No triplet exciton quenching by ETL

High triplet energy host (ET > 2.8eV)

- Efficient energy transfer to dopant
- Little back energy transfer from dopant to host

High efficiency blue dopant (ET ~ 2.7 eV)

- Deep blue emission
- High quantum efficiency

Prof. Jun Yeob Lee, IMID 2014

Ideal Device Design For Phosphorescent OLEDs

HTS Series - High triplet energy

Hole Transporters

Hole Transporter	T _g (°C)	$\mu_{\rm h} ({\rm cm}^2 V^{-1} s^{-1})$
TPD	61	1 x 10 ⁻³
α-NPB	98	1 x 10 ⁻⁴
m-MTDATA	75	2.7×10^{-5}
Spiro-tad	133	1x 10 ⁻⁵

Spiro-TAD

m-MTDATA

Hole Transporters

(12) UK Patent Application (19) GB (11) 2513013 (13) A (13

(21) Application No: 1405474.6 (22) Date of Filing: 27.03.2014 (30) Priority Data: (31) 1306365 (32) 09.04.2013 (33) GB	(51) INT CL: C07D 339/08 (2006.01) C07D 407/14 (2006.01) C07D 417/10 (2006.01) C07D 417/10 (2006.01) C09K 11/06 (2006.01) H01L 51/50 (2006.01) H01M 14/00 (2006.01) H05B 33/14 (2006.01)			
(71) Applicant(s): Power Oleds Limited Cumbrian House, 84 Cumbrian Gardens, LONDON, NW2 1EL, United Kingdom	(56) Documents Cited: EP 0562883 A WO 2011/021803 A JP 2011178742 A JP 2009196919 A JP 2000186066 A JP 2000063335 A Bulletin of the Korean Chemical Society, Vol. 34(1), 2013 [published online 9 January 2013], (Ahn,			
(72) Inventor(s): Poopathy Kathirgamanathan	Yeonseon et al), "Electroluminescence characteristics of a new green-emitting phenylphenothiazine derivative with phenylbenzimidazole substituent" pages 107-111			
 (74) Agent and/or Address for Service: Lucas & Co 135 Westhall Road, WARLINGHAM, Surrey, CR6 9HJ, United Kingdom 	(58) Field of Search: Other: CAS ONLINE			

(54) Title of the Invention: Heterocyclic compounds and their use in electro-optical or opto-electronic devices Abstract Title: Heterocyclic compounds and their use in electro-optical or opto-electronic devices (43) International Publication Date 16 October 2014 (16.10.2014)

English

English

- (51) International Patent Classification: C07D 339/08 (2006.01)
- (21) International Application Number:

PCT/GB2014/050970

(22) International Filing Date:

27 March 2014 (27.03.2014)

- (25) Filing Language:
- (26) Publication Language:

- (30) Priority Data: 1306365.6 9 April 2013 (09.04.2013) GB
- (71) Applicant: POWER OLEDS LIMITED [GB/GB]; Cumbrian House, 84 Cumbrian Gardens, London NW2 1EL (GB).
- (72) Inventor: KATHIRGAMANATHAN, Poopathy; The Little Lancaster House, 1 Lancaster Road, North Harrow, Middlesex HA2 7NN (GB).
- (74) Agent: LUCAS & CO; 135 Westhall Road, Warlingham Surrey CR6 9HJ (GB).

(10) International Publication Number WO 2014/167286 A2

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

- - - - -

HOMO-LUMO values of Hole Transporters

Energy band diagram

Solution Processed Devices

HTS-8 in Chlorobenzene
(Normal light)HTS-8 in Chlorobenzene
(Under UV light)

HTS-08

Device structure: ITO/PEDOT:PSS(40 nm)/HTS/TCTA:TPBi(3:7):Ir(ppy)₂acac (10 %)(20 nm)/TPBi(30 nm)/LiF(0.5 nm)/AI

Device structure: ITO/PEDOT:PSS(40 nm)/HTS/TCTA:TPBi(3:7):Ir(ppy)₂acac (10 %)(Total thickness 20 nm)/ TPBi(30 nm)/LiF(0.5 nm)/AI

	V _T (V)	V _D (V)	Maximum		@1000nits		@10000nits	
HTL			C/E (cd/A)	P/E (lm/W)	C/E (cd/A)	P/E (lm/W)	C/E (cd/A)	P/E (lm/W)
NPB ~50 nm	2.48	4.66	58.93	68.07	47.02	31.70	35.89	18.93
HTS-008 ~10 nm	3.01	4.75	40.66	25.85	38.92	25.73	36.49	15.77
HTS-011 ~10 nm	2.65	4.11	70.75	69.29	68.95	52.71	58.81	29.07

HTS-08

Improvement of efficiency of HTS-11 over α -NPB (VTE)

Luminance/	Improvement in	Improvement in
cd m ⁻²	current	Power
	efficiency	efficiency
1000	47%	66%
10000	64%	54%

Typical Energy Level Diagram

